Integrating LLMs and Decision Transformers for Language Grounded Generative Quality-Diversity

08/25/2023
by   Achkan Salehi, et al.
0

Quality-Diversity is a branch of stochastic optimization that is often applied to problems from the Reinforcement Learning and control domains in order to construct repertoires of well-performing policies/skills that exhibit diversity with respect to a behavior space. Such archives are usually composed of a finite number of reactive agents which are each associated to a unique behavior descriptor, and instantiating behavior descriptors outside of that coarsely discretized space is not straight-forward. While a few recent works suggest solutions to that issue, the trajectory that is generated is not easily customizable beyond the specification of a target behavior descriptor. We propose to jointly solve those problems in environments where semantic information about static scene elements is available by leveraging a Large Language Model to augment the repertoire with natural language descriptions of trajectories, and training a policy conditioned on those descriptions. Thus, our method allows a user to not only specify an arbitrary target behavior descriptor, but also provide the model with a high-level textual prompt to shape the generated trajectory. We also propose an LLM-based approach to evaluating the performance of such generative agents. Furthermore, we develop a benchmark based on simulated robot navigation in a 2d maze that we use for experimental validation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro