Deep Learning-Based Semantic Segmentation of Microscale Objects

07/03/2019
by   Ekta U. Samani, et al.
0

Accurate estimation of the positions and shapes of microscale objects is crucial for automated imaging-guided manipulation using a non-contact technique such as optical tweezers. Perception methods that use traditional computer vision algorithms tend to fail when the manipulation environments are crowded. In this paper, we present a deep learning model for semantic segmentation of the images representing such environments. Our model successfully performs segmentation with a high mean Intersection Over Union score of 0.91.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro