Zero-Shot Recognition through Image-Guided Semantic Classification

07/23/2020
by   Mei-Chen Yeh, et al.
0

We present a new embedding-based framework for zero-shot learning (ZSL). Most embedding-based methods aim to learn the correspondence between an image classifier (visual representation) and its class prototype (semantic representation) for each class. Motivated by the binary relevance method for multi-label classification, we propose to inversely learn the mapping between an image and a semantic classifier. Given an input image, the proposed Image-Guided Semantic Classification (IGSC) method creates a label classifier, being applied to all label embeddings to determine whether a label belongs to the input image. Therefore, semantic classifiers are image-adaptive and are generated during inference. IGSC is conceptually simple and can be realized by a slight enhancement of an existing deep architecture for classification; yet it is effective and outperforms state-of-the-art embedding-based generalized ZSL approaches on standard benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro