Zero-Shot Cross-lingual Semantic Parsing

04/15/2021
by   Tom Sherborne, et al.
0

Recent work in crosslingual semantic parsing has successfully applied machine translation to localize accurate parsing to new languages. However, these advances assume access to high-quality machine translation systems, and tools such as word aligners, for all test languages. We remove these assumptions and study cross-lingual semantic parsing as a zero-shot problem without parallel data for 7 test languages (DE, ZH, FR, ES, PT, HI, TR). We propose a multi-task encoder-decoder model to transfer parsing knowledge to additional languages using only English-Logical form paired data and unlabeled, monolingual utterances in each test language. We train an encoder to generate language-agnostic representations jointly optimized for generating logical forms or utterance reconstruction and against language discriminability. Our system frames zero-shot parsing as a latent-space alignment problem and finds that pre-trained models can be improved to generate logical forms with minimal cross-lingual transfer penalty. Experimental results on Overnight and a new executable version of MultiATIS++ find that our zero-shot approach performs above back-translation baselines and, in some cases, approaches the supervised upper bound.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro