XFlow: 1D-2D Cross-modal Deep Neural Networks for Audiovisual Classification

09/02/2017
by   Cătălina Cangea, et al.
0

We propose two multimodal deep learning architectures that allow for cross-modal dataflow (XFlow) between the feature extractors, thereby extracting more interpretable features and obtaining a better representation than through unimodal learning, for the same amount of training data. These models can usefully exploit correlations between audio and visual data, which have a different dimensionality and are therefore nontrivially exchangeable. Our work improves on existing multimodal deep learning metholodogies in two essential ways: (1) it presents a novel method for performing cross-modality (before features are learned from individual modalities) and (2) extends the previously proposed cross-connections, which only transfer information between streams that process compatible data. Both cross-modal architectures outperformed their baselines (by up to 7.5

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro