Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem

03/31/2020
by   Jia-Jie Zhu, et al.
0

In order to anticipate rare and impactful events, we propose to quantify the worst-case risk under distributional ambiguity using a recent development in kernel methods – the kernel mean embedding. Specifically, we formulate the generalized moment problem whose ambiguity set (i.e., the moment constraint) is described by constraints in the associated reproducing kernel Hilbert space in a nonparametric manner. We then present the tractable optimization formulation and its theoretical justification. As a concrete application, we numerically test the proposed method in characterizing the worst-case constraint violation probability in the context of a constrained stochastic control system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro