Word-level Lexical Normalisation using Context-Dependent Embeddings

11/13/2019
by   Michael Stewart, et al.
0

Lexical normalisation (LN) is the process of correcting each word in a dataset to its canonical form so that it may be more easily and more accurately analysed. Most lexical normalisation systems operate at the character-level, while word-level models are seldom used. Recent language models offer solutions to the drawbacks of word-level LN models, yet, to the best of our knowledge, no research has investigated their effectiveness on LN. In this paper we introduce a word-level GRU-based LN model and investigate the effectiveness of recent embedding techniques on word-level LN. Our results show that our GRU-based word-level model produces greater results than character-level models, and outperforms existing deep-learning based LN techniques on Twitter data. We also find that randomly-initialised embeddings are capable of outperforming pre-trained embedding models in certain scenarios. Finally, we release a substantial lexical normalisation dataset to the community.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro