What Data Augmentation Do We Need for Deep-Learning-Based Finance?

06/08/2021
by   Liu Ziyin, et al.
1

The main task we consider is portfolio construction in a speculative market, a fundamental problem in modern finance. While various empirical works now exist to explore deep learning in finance, the theory side is almost non-existent. In this work, we focus on developing a theoretical framework for understanding the use of data augmentation for deep-learning-based approaches to quantitative finance. The proposed theory clarifies the role and necessity of data augmentation for finance; moreover, our theory motivates a simple algorithm of injecting a random noise of strength √(|r_t-1|) to the observed return r_t. This algorithm is shown to work well in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro