Weakly Supervised Video Anomaly Detection via Transformer-Enabled Temporal Relation Learning

08/09/2022
by   Chengliang Liu, et al.
0

Weakly supervised video anomaly detection is a challenging problem due to the lack of frame-level labels in training videos. Most previous works typically tackle this task with the multiple instance learning paradigm, which divides a video into multiple snippets and trains a snippet classifier to distinguish anomalies from normal snippets via video-level supervision information. Although existing approaches achieve remarkable progresses, these solutions are still limited in the insufficient representations. In this paper, we propose a novel weakly supervised temporal relation learning framework for anomaly detection, which efficiently explores the temporal relation between snippets and enhances the discriminative powers of features using only video-level labelled videos. To this end, we design a transformer-enabled feature encoder to convert the input task-agnostic features into discriminative task-specific features by mining the semantic correlation and position relation between video snippets. As a result, our model can make a more accurate anomaly detection for current video snippet based on the learned discriminative features. Experimental results indicate that the proposed method is superior to existing state-of-the-art approaches, which demonstrates the effectiveness of our model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro