Weakly supervised causal representation learning

03/30/2022
by   Johann Brehmer, et al.
26

Learning high-level causal representations together with a causal model from unstructured low-level data such as pixels is impossible from observational data alone. We prove under mild assumptions that this representation is identifiable in a weakly supervised setting. This requires a dataset with paired samples before and after random, unknown interventions, but no further labels. Finally, we show that we can infer the representation and causal graph reliably in a simple synthetic domain using a variational autoencoder with a structural causal model as prior.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro