Wasserstein Introspective Neural Networks

11/24/2017
by   Kwonjoon Lee, et al.
0

We present Wasserstein introspective neural networks (WINN) that are both a generator and a discriminator within a single model. WINN provides a significant improvement over the recent introspective neural networks (INN) method by enhancing INN's generative modeling capability. WINN has three interesting properties: (1) A mathematical connection between the formulation of Wasserstein generative adversarial networks (WGAN) and the INN algorithm is made; (2) The explicit adoption of the Wasserstein distance into INN results in a large enhancement to INN, achieving compelling results even with a single classifier --- e.g., providing a 20 times reduction in model size over INN within texture modeling; (3) When applied to supervised classification, WINN also gives rise to greater robustness with an 88% reduction of errors against adversarial examples --- improved over the result of 39% by an INN-family algorithm. In the experiments, we report encouraging results on unsupervised learning problems including texture, face, and object modeling, as well as a supervised classification task against adversarial attack.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro