VLSI Design of a 3-bit Constant-Modulus Precoder for Massive MU-MIMO

03/01/2018
by   Oscar Castañeda, et al.
0

Fifth-generation (5G) cellular systems will build on massive multi-user (MU) multiple-input multiple-output (MIMO) technology to attain high spectral efficiency. However, having hundreds of antennas and radio-frequency (RF) chains at the base station (BS) entails prohibitively high hardware costs and power consumption. This paper proposes a novel nonlinear precoding algorithm for the massive MU-MIMO downlink in which each RF chain contains an 8-phase (3-bit) constant-modulus transmitter, enabling the use of low-cost and power-efficient analog hardware. We present a high-throughput VLSI architecture and show implementation results on a Xilinx Virtex-7 FPGA. Compared to a recently-reported nonlinear precoder for BS designs that use two 1-bit digital-to-analog converters per RF chain, our design enables up to 3.75 dB transmit power reduction at no more than a 2.7x increase in FPGA resources.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro