Versatile Energy-Based Models for High Energy Physics

02/01/2023
by   Taoli Cheng, et al.
0

Energy-based models have the natural advantage of flexibility in the form of the energy function. Recently, energy-based models have achieved great success in modeling high-dimensional data in computer vision and natural language processing. In accordance with these signs of progress, we build a versatile energy-based model for High Energy Physics events at the Large Hadron Collider. This framework builds on a powerful generative model and describes higher-order inter-particle interactions. It suits different encoding architectures and builds on implicit generation. As for applicational aspects, it can serve as a powerful parameterized event generator, a generic anomalous signal detector, and an augmented event classifier.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro