Using Distributional Thesaurus Embedding for Co-hyponymy Detection

02/24/2020
by   Abhik Jana, et al.
0

Discriminating lexical relations among distributionally similar words has always been a challenge for natural language processing (NLP) community. In this paper, we investigate whether the network embedding of distributional thesaurus can be effectively utilized to detect co-hyponymy relations. By extensive experiments over three benchmark datasets, we show that the vector representation obtained by applying node2vec on distributional thesaurus outperforms the state-of-the-art models for binary classification of co-hyponymy vs. hypernymy, as well as co-hyponymy vs. meronymy, by huge margins.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro