Using Contrastive Samples for Identifying and Leveraging Possible Causal Relationships in Reinforcement Learning

10/28/2022
by   Harshad Khadilkar, et al.
0

A significant challenge in reinforcement learning is quantifying the complex relationship between actions and long-term rewards. The effects may manifest themselves over a long sequence of state-action pairs, making them hard to pinpoint. In this paper, we propose a method to link transitions with significant deviations in state with unusually large variations in subsequent rewards. Such transitions are marked as possible causal effects, and the corresponding state-action pairs are added to a separate replay buffer. In addition, we include contrastive samples corresponding to transitions from a similar state but with differing actions. Including this Contrastive Experience Replay (CER) during training is shown to outperform standard value-based methods on 2D navigation tasks. We believe that CER can be useful for a broad class of learning tasks, including for any off-policy reinforcement learning algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro