Updating Probabilities in Multiply-Connected Belief Networks

03/27/2013
by   Jaap Suermondt, et al.
0

This paper focuses on probability updates in multiply-connected belief networks. Pearl has designed the method of conditioning, which enables us to apply his algorithm for belief updates in singly-connected networks to multiply-connected belief networks by selecting a loop-cutset for the network and instantiating these loop-cutset nodes. We discuss conditions that need to be satisfied by the selected nodes. We present a heuristic algorithm for finding a loop-cutset that satisfies these conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro