Unsupervised Pseudo-Labeling for Extractive Summarization on Electronic Health Records

11/20/2018
by   Xiangan Liu, et al.
0

Extractive summarization is very useful for physicians to better manage and digest Electronic Health Records (EHRs). However, the training of a supervised model requires disease-specific medical background and is thus very expensive. We studied how to utilize the intrinsic correlation between multiple EHRs to generate pseudo-labels and train a supervised model with no external annotation. Experiments on real-patient data validate that our model is effective in summarizing crucial disease-specific information for patients.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro