Unsupervised Instance Segmentation in Microscopy Images via Panoptic Domain Adaptation and Task Re-weighting

05/05/2020
by   Dongnan Liu, et al.
19

Unsupervised domain adaptation (UDA) for nuclei instance segmentation is important for digital pathology, as it alleviates the burden of labor-intensive annotation and domain shift across datasets. In this work, we propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images, by learning from fluorescence microscopy images. More specifically, we first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images. Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation. Thirdly, in order to avoid the influence of the source-biased features, we propose a task re-weighting mechanism to dynamically add trade-off weights for the task-specific loss functions. Experimental results on three datasets indicate that our proposed method outperforms state-of-the-art UDA methods significantly, and demonstrates a similar performance as fully supervised methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro