Unsupervised Classification of Voiced Speech and Pitch Tracking Using Forward-Backward Kalman Filtering

03/01/2021
by   Benedikt Boenninghoff, et al.
0

The detection of voiced speech, the estimation of the fundamental frequency, and the tracking of pitch values over time are crucial subtasks for a variety of speech processing techniques. Many different algorithms have been developed for each of the three subtasks. We present a new algorithm that integrates the three subtasks into a single procedure. The algorithm can be applied to pre-recorded speech utterances in the presence of considerable amounts of background noise. We combine a collection of standard metrics, such as the zero-crossing rate, for example, to formulate an unsupervised voicing classifier. The estimation of pitch values is accomplished with a hybrid autocorrelation-based technique. We propose a forward-backward Kalman filter to smooth the estimated pitch contour. In experiments, we are able to show that the proposed method compares favorably with current, state-of-the-art pitch detection algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro