Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations

03/20/2020
by   Jerome Droniou, et al.
0

Gradient schemes is a framework that enables the unified convergence analysis of many numerical methods for elliptic and parabolic partial differential equations: conforming and non-conforming Finite Element, Mixed Finite Element and Finite Volume methods. We show here that this framework can be applied to a family of degenerate non-linear parabolic equations (which contain in particular the Richards', Stefan's and Leray–Lions' models), and we prove a uniform-in-time strong-in-space convergence result for the gradient scheme approximations of these equations. In order to establish this convergence, we develop several discrete compactness tools for numerical approximations of parabolic models, including a discontinuous Ascoli-Arzelà theorem and a uniform-in-time weak-in-space discrete Aubin-Simon theorem. The model's degeneracies, which occur both in the time and space derivatives, also requires us to develop a discrete compensated compactness result.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro