Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency

06/22/2020
by   Donggyu Kim, et al.
0

This paper introduces unified models for high-dimensional factor-based Ito process, which can accommodate both continuous-time Ito diffusion and discrete-time stochastic volatility (SV) models by embedding the discrete SV model in the continuous instantaneous factor volatility process. We call it the SV-Ito model. Based on the series of daily integrated factor volatility matrix estimators, we propose quasi-maximum likelihood and least squares estimation methods. Their asymptotic properties are established. We apply the proposed method to predict future vast volatility matrix whose asymptotic behaviors are studied. A simulation study is conducted to check the finite sample performance of the proposed estimation and prediction method. An empirical analysis is carried out to demonstrate the advantage of the SV-Ito model in volatility prediction and portfolio allocation problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro