Understanding the dynamic impact of COVID-19 through competing risk modeling with bivariate varying coefficients

09/01/2022
by   Wenbo Wu, et al.
0

The coronavirus disease 2019 (COVID-19) pandemic has exerted a profound impact on patients with end-stage renal disease relying on kidney dialysis to sustain their lives. Motivated by a request by the U.S. Centers for Medicare Medicaid Services, our analysis of their postdischarge hospital readmissions and deaths in 2020 revealed that the COVID-19 effect has varied significantly with postdischarge time and time since the onset of the pandemic. However, the complex dynamics of the COVID-19 effect trajectories cannot be characterized by existing varying coefficient models. To address this issue, we propose a bivariate varying coefficient model for competing risks within a cause-specific hazard framework, where tensor-product B-splines are used to estimate the surface of the COVID-19 effect. An efficient proximal Newton algorithm is developed to facilitate the fitting of the new model to the massive Medicare data for dialysis patients. Difference-based anisotropic penalization is introduced to mitigate model overfitting and the wiggliness of the estimated trajectories; various cross-validation methods are considered in the determination of optimal tuning parameters. Hypothesis testing procedures are designed to examine whether the COVID-19 effect varies significantly with postdischarge time and the time since pandemic onset, either jointly or separately. Simulation experiments are conducted to evaluate the estimation accuracy, type I error rate, statistical power, and model selection procedures. Applications to Medicare dialysis patients demonstrate the real-world performance of the proposed methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro