Two flags in a semimodular lattice generate an antimatroid

04/07/2022
by   Koyo Hayashi, et al.
0

A basic property in a modular lattice is that any two flags generate a distributive sublattice. It is shown (Abels 1991, Herscovic 1998) that two flags in a semimodular lattice no longer generate such a good sublattice, whereas shortest galleries connecting them form a relatively good join-sublattice. In this note, we sharpen this investigation to establish an analogue of the two-flag generation theorem for a semimodular lattice. We consider the notion of a modular convex subset, which is a subset closed under the join and meet only for modular pairs, and show that the modular convex hull of two flags in a semimodular lattice of rank n is isomorphic to a union-closed family on [n]. This family uniquely determines an antimatroid, which coincides with the join-sublattice of shortest galleries of the two flags.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro