Trend Filtering – II. Denoising Astronomical Signals with Varying Degrees of Smoothness

01/10/2020
by   Collin A. Politsch, et al.
1

Trend filtering—first introduced into the astronomical literature in Paper I of this series—is a state-of-the-art statistical tool for denoising one-dimensional signals that possess varying degrees of smoothness. In this work, we demonstrate the broad utility of trend filtering to observational astronomy by discussing how it can contribute to a variety of spectroscopic and time-domain studies. The observations we discuss are (1) the Lyman-α forest of quasar spectra; (2) more general spectroscopy of quasars, galaxies, and stars; (3) stellar light curves with planetary transits; (4) eclipsing binary light curves; and (5) supernova light curves. We study the Lyman-α forest in the greatest detail—using trend filtering to map the large-scale structure of the intergalactic medium along quasar-observer lines of sight. The remaining studies share broad themes of: (1) estimating observable parameters of light curves and spectra; and (2) constructing observational spectral/light-curve templates. We also briefly discuss the utility of trend filtering as a tool for one-dimensional data reduction and compression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro