Translate to Disambiguate: Zero-shot Multilingual Word Sense Disambiguation with Pretrained Language Models

04/26/2023
by   Haoqiang Kang, et al.
0

Pretrained Language Models (PLMs) learn rich cross-lingual knowledge and can be finetuned to perform well on diverse tasks such as translation and multilingual word sense disambiguation (WSD). However, they often struggle at disambiguating word sense in a zero-shot setting. To better understand this contrast, we present a new study investigating how well PLMs capture cross-lingual word sense with Contextual Word-Level Translation (C-WLT), an extension of word-level translation that prompts the model to translate a given word in context. We find that as the model size increases, PLMs encode more cross-lingual word sense knowledge and better use context to improve WLT performance. Building on C-WLT, we introduce a zero-shot approach for WSD, tested on 18 languages from the XL-WSD dataset. Our method outperforms fully supervised baselines on recall for many evaluation languages without additional training or finetuning. This study presents a first step towards understanding how to best leverage the cross-lingual knowledge inside PLMs for robust zero-shot reasoning in any language.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro