Transformer-based Methods for Recognizing Ultra Fine-grained Entities (RUFES)

04/13/2021
by   Emanuela Boros, et al.
0

This paper summarizes the participation of the Laboratoire Informatique, Image et Interaction (L3i laboratory) of the University of La Rochelle in the Recognizing Ultra Fine-grained Entities (RUFES) track within the Text Analysis Conference (TAC) series of evaluation workshops. Our participation relies on two neural-based models, one based on a pre-trained and fine-tuned language model with a stack of Transformer layers for fine-grained entity extraction and one out-of-the-box model for within-document entity coreference. We observe that our approach has great potential in increasing the performance of fine-grained entity recognition. Thus, the future work envisioned is to enhance the ability of the models following additional experiments and a deeper analysis of the results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro