Transfer Learning for Instance Segmentation of Waste Bottles using Mask R-CNN Algorithm

04/15/2022
by   Punitha Jaikumar, et al.
0

This paper proposes a methodological approach with a transfer learning scheme for plastic waste bottle detection and instance segmentation using the mask region proposal convolutional neural network (Mask R-CNN). Plastic bottles constitute one of the major pollutants posing a serious threat to the environment both in oceans and on land. The automated identification and segregation of bottles can facilitate plastic waste recycling. We prepare a custom-made dataset of 192 bottle images with pixel-by pixel-polygon annotation for the automatic segmentation task. The proposed transfer learning scheme makes use of a Mask R-CNN model pre-trained on the Microsoft COCO dataset. We present a comprehensive scheme for fine-tuning the base pre-trained Mask-RCNN model on our custom dataset. Our final fine-tuned model has achieved 59.4 mean average precision (mAP), which corresponds to the MS COCO metric. The results indicate a promising application of deep learning for detecting waste bottles.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro