Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

06/09/2021
by   Brendan Leigh Ross, et al.
0

Normalizing flows are generative models that provide tractable density estimation by transforming a simple base distribution into a complex target distribution. However, this technique cannot directly model data supported on an unknown low-dimensional manifold, a common occurrence in real-world domains such as image data. Recent attempts to remedy this limitation have introduced geometric complications that defeat a central benefit of normalizing flows: exact density estimation. We recover this benefit with Conformal Embedding Flows, a framework for designing flows that learn manifolds with tractable densities. We argue that composing a standard flow with a trainable conformal embedding is the most natural way to model manifold-supported data. To this end, we present a series of conformal building blocks and apply them in experiments with real-world and synthetic data to demonstrate that flows can model manifold-supported distributions without sacrificing tractable likelihoods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro