Tracking Objects as Pixel-wise Distributions

07/12/2022
by   Zelin Zhao, et al.
1

Multi-object tracking (MOT) requires detecting and associating objects through frames. Unlike tracking via detected bounding boxes or tracking objects as points, we propose tracking objects as pixel-wise distributions. We instantiate this idea on a transformer-based architecture, P3AFormer, with pixel-wise propagation, prediction, and association. P3AFormer propagates pixel-wise features guided by flow information to pass messages between frames. Furthermore, P3AFormer adopts a meta-architecture to produce multi-scale object feature maps. During inference, a pixel-wise association procedure is proposed to recover object connections through frames based on the pixel-wise prediction. P3AFormer yields 81.2% in terms of MOTA on the MOT17 benchmark – the first among all transformer networks to reach 80% MOTA in literature. P3AFormer also outperforms state-of-the-arts on the MOT20 and KITTI benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro