Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications

06/06/2019
by   Wei Zhao, et al.
0

Obstacles hindering the development of capsule networks for challenging NLP applications include poor scalability to large output spaces and less reliable routing processes. In this paper, we introduce: 1) an agreement score to evaluate the performance of routing processes at instance level; 2) an adaptive optimizer to enhance the reliability of routing; 3) capsule compression and partial routing to improve the scalability of capsule networks. We validate our approach on two NLP tasks, namely: multi-label text classification and question answering. Experimental results show that our approach considerably improves over strong competitors on both tasks. In addition, we gain the best results in low-resource settings with few training instances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro