Towards Real-Time Panoptic Narrative Grounding by an End-to-End Grounding Network

01/09/2023
by   Haowei Wang, et al.
0

Panoptic Narrative Grounding (PNG) is an emerging cross-modal grounding task, which locates the target regions of an image corresponding to the text description. Existing approaches for PNG are mainly based on a two-stage paradigm, which is computationally expensive. In this paper, we propose a one-stage network for real-time PNG, termed End-to-End Panoptic Narrative Grounding network (EPNG), which directly generates masks for referents. Specifically, we propose two innovative designs, i.e., Locality-Perceptive Attention (LPA) and a bidirectional Semantic Alignment Loss (SAL), to properly handle the many-to-many relationship between textual expressions and visual objects. LPA embeds the local spatial priors into attention modeling, i.e., a pixel may belong to multiple masks at different scales, thereby improving segmentation. To help understand the complex semantic relationships, SAL proposes a bidirectional contrastive objective to regularize the semantic consistency inter modalities. Extensive experiments on the PNG benchmark dataset demonstrate the effectiveness and efficiency of our method. Compared to the single-stage baseline, our method achieves a significant improvement of up to 9.4 two-stage model. Meanwhile, the generalization ability of EPNG is also validated by zero-shot experiments on other grounding tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro