Towards a Shapley Value Graph Framework for Medical peer-influence

12/29/2021
by   Jamie Duell, et al.
1

eXplainable Artificial Intelligence (XAI) is a sub-field of Artificial Intelligence (AI) that is at the forefront of AI research. In XAI feature attribution methods produce explanations in the form of feature importance. A limitation of existing feature attribution methods is that there is a lack of explanation towards the consequence of intervention. Although contribution towards a certain prediction is highlighted, the influence between features and the consequence of intervention is not addressed. The aim of this paper is to introduce a new framework to look deeper into explanations using graph representation for feature-to-feature interactions to improve the interpretability of black-box Machine Learning (ML) models and inform intervention.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro