Towards a High-performance and Secure Memory System and Architecture for Emerging Applications

05/09/2022
by   Zhendong Wang, et al.
0

In this dissertation, we propose a memory and computing coordinated methodology to thoroughly exploit the characteristics and capabilities of the GPU-based heterogeneous system to effectively optimize applications' performance and privacy. Specifically, 1) we propose a task-aware and dynamic memory management mechanism to co-optimize applications' latency and memory footprint, especially in multitasking scenarios. 2) We propose a novel latency-aware memory management framework that analyzes the application characteristics and hardware features to reduce applications' initialization latency and response time. 3) We develop a new model extraction attack that explores the vulnerability of the GPU unified memory system to accurately steal private DNN models. 4) We propose a CPU/GPU Co-Encryption mechanism that can defend against a timing-correlation attack in an integrated CPU/GPU platform to provide a secure execution environment for the edge applications. This dissertation aims at developing a high-performance and secure memory system and architecture in GPU heterogeneous platforms to deploy emerging AI-enabled applications efficiently and safely.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro