Topology-Aware Resilient Routing Protocol for FANETs: An Adaptive Q-Learning Approach

06/30/2023
by   Yanpeng Cui, et al.
0

Flying ad hoc networks (FANETs) play a crucial role in numerous military and civil applications since it shortens mission duration and enhances coverage significantly compared with a single unmanned aerial vehicle (UAV). Whereas, designing an energy-efficient FANET routing protocol with a high packet delivery rate (PDR) and low delay is challenging owing to the dynamic topology changes. In this article, we propose a topology-aware resilient routing strategy based on adaptive Q-learning (TARRAQ) to accurately capture topology changes with low overhead and make routing decisions in a distributed and autonomous way. First, we analyze the dynamic behavior of UAV nodes via the queuing theory, and then the closed-form solutions of neighbors' change rate (NCR) and neighbors' change interarrival time (NCIT) distribution are derived. Based on the real-time NCR and NCIT, a resilient sensing interval (SI) is determined by defining the expected sensing delay of network events. Besides, we also present an adaptive Q-learning approach that enables UAVs to make distributed, autonomous, and adaptive routing decisions, where the above SI ensures that the action space can be updated in time at a low cost. The simulation results verify the accuracy of the topology dynamic analysis model and also prove that our TARRAQ outperforms the Q-learning-based topology-aware routing (QTAR), mobility prediction-based virtual routing (MPVR), and greedy perimeter stateless routing based on energy-efficient hello (EE-Hello) in terms of 25.23 PDR, and 5.12

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro