TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios

11/30/2021
by   Tommaso Barbariol, et al.
0

Unsupervised anomaly detection tackles the problem of finding anomalies inside datasets without the labels availability; since data tagging is typically hard or expensive to obtain, such approaches have seen huge applicability in recent years. In this context, Isolation Forest is a popular algorithm able to define an anomaly score by means of an ensemble of peculiar trees called isolation trees. These are built using a random partitioning procedure that is extremely fast and cheap to train. However, we find that the standard algorithm might be improved in terms of memory requirements, latency and performances; this is of particular importance in low resources scenarios and in TinyML implementations on ultra-constrained microprocessors. Moreover, Anomaly Detection approaches currently do not take advantage of weak supervisions: being typically consumed in Decision Support Systems, feedback from the users, even if rare, can be a valuable source of information that is currently unexplored. Beside showing iForest training limitations, we propose here TiWS-iForest, an approach that, by leveraging weak supervision is able to reduce Isolation Forest complexity and to enhance detection performances. We showed the effectiveness of TiWS-iForest on real word datasets and we share the code in a public repository to enhance reproducibility.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro