Timestamped Embedding-Matching Acoustic-to-Word CTC ASR

06/20/2023
by   Woojay Jeon, et al.
0

In this work, we describe a novel method of training an embedding-matching word-level connectionist temporal classification (CTC) automatic speech recognizer (ASR) such that it directly produces word start times and durations, required by many real-world applications, in addition to the transcription. The word timestamps enable the ASR to output word segmentations and word confusion networks without relying on a secondary model or forced alignment process when testing. Our proposed system has similar word segmentation accuracy as a hybrid DNN-HMM (Deep Neural Network-Hidden Markov Model) system, with less than 3ms difference in mean absolute error in word start times on TIMIT data. At the same time, we observed less than 5 compared to the non-timestamped system when using the same audio training data and nearly identical model size. We also contribute more rigorous analysis of multiple-hypothesis embedding-matching ASR in general.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro