The Renewed Case for the Reduced Instruction Set Computer: Avoiding ISA Bloat with Macro-Op Fusion for RISC-V

07/08/2016
by   Christopher Celio, et al.
0

This report makes the case that a well-designed Reduced Instruction Set Computer (RISC) can match, and even exceed, the performance and code density of existing commercial Complex Instruction Set Computers (CISC) while maintaining the simplicity and cost-effectiveness that underpins the original RISC goals. We begin by comparing the dynamic instruction counts and dynamic instruction bytes fetched for the popular proprietary ARMv7, ARMv8, IA-32, and x86-64 Instruction Set Architectures (ISAs) against the free and open RISC-V RV64G and RV64GC ISAs when running the SPEC CINT2006 benchmark suite. RISC-V was designed as a very small ISA to support a wide range of implementations, and has a less mature compiler toolchain. However, we observe that on SPEC CINT2006 RV64G executes on average 16 than IA-32, 9 ARMv7. CISC x86 implementations break up complex instructions into smaller internal RISC-like micro-ops, and the RV64G instruction count is within 2 retired micro-op count. RV64GC, the compressed variant of RV64G, is the densest ISA studied, fetching 8 observed that much of the increased RISC-V instruction count is due to a small set of common multi-instruction idioms. Exploiting this fact, the RV64G and RV64GC effective instruction count can be reduced by 5.4 compressed RISC-V ISA extension with macro-op fusion provides both the densest ISA and the fewest dynamic operations retired per program, reducing the motivation to add more instructions to the ISA. This approach retains a single simple ISA suitable for both low-end and high-end implementations, where high-end implementations can boost performance through microarchitectural techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro