The Produoidal Algebra of Process Decomposition

01/27/2023
by   Matt Earnshaw, et al.
0

We introduce the normal produoidal category of monoidal contexts over an arbitrary monoidal category. In the same sense that a monoidal morphism represents a process, a monoidal context represents an incomplete process: a piece of a decomposition, possibly containing missing parts. We characterize monoidal contexts in terms of universal properties. In particular, symmetric monoidal contexts coincide with monoidal lenses, endowing them with a novel universal property. We apply this algebraic structure to the analysis of multi-party interaction protocols in arbitrary theories of processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro