The Predictive Normalized Maximum Likelihood for Over-parameterized Linear Regression with Norm Constraint: Regret and Double Descent

02/14/2021
by   Koby Bibas, et al.
0

A fundamental tenet of learning theory is that a trade-off exists between the complexity of a prediction rule and its ability to generalize. The double-decent phenomenon shows that modern machine learning models do not obey this paradigm: beyond the interpolation limit, the test error declines as model complexity increases. We investigate over-parameterization in linear regression using the recently proposed predictive normalized maximum likelihood (pNML) learner which is the min-max regret solution for individual data. We derive an upper bound of its regret and show that if the test sample lies mostly in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, the model generalizes despite its over-parameterized nature. We demonstrate the use of the pNML regret as a point-wise learnability measure on synthetic data and that it can successfully predict the double-decent phenomenon using the UCI dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro