The Minimax Learning Rate of Normal and Ising Undirected Graphical Models

06/18/2018
by   Luc Devroye, et al.
0

Let G be an undirected graph with m edges and d vertices. We show that d-dimensional Ising models on G can be learned from n i.i.d. samples within expected total variation distance some constant factor of {1, √((m + d)/n)}, and that this rate is optimal. We show that the same rate holds for the class of d-dimensional multivariate normal undirected graphical models with respect to G. We also identify the optimal rate of {1, √(m/n)} for Ising models with no external magnetic field.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro