The autofeat Python Library for Automatic Feature Engineering and Selection

01/22/2019
by   Franziska Horn, et al.
0

This paper describes the autofeat Python library, which provides a scikit-learn style linear regression model with automatic feature engineering and selection capabilities. Complex non-linear machine learning models such as neural networks are in practice often difficult to train and even harder to explain to non-statisticians, who require transparent analysis results as a basis for important business decisions. While linear models are efficient and intuitive, they generally provide lower prediction accuracies. Our library provides a multi-step feature engineering and selection process, where first a large pool of non-linear features is generated, from which then a small and robust set of meaningful features is selected, which improve the prediction accuracy of a linear model while retaining its interpretability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro