The AMU-UEDIN Submission to the WMT16 News Translation Task: Attention-based NMT Models as Feature Functions in Phrase-based SMT

05/16/2016
by   Marcin Junczys-Dowmunt, et al.
0

This paper describes the AMU-UEDIN submissions to the WMT 2016 shared task on news translation. We explore methods of decode-time integration of attention-based neural translation models with phrase-based statistical machine translation. Efficient batch-algorithms for GPU-querying are proposed and implemented. For English-Russian, our system stays behind the state-of-the-art pure neural models in terms of BLEU. Among restricted systems, manual evaluation places it in the first cluster tied with the pure neural model. For the Russian-English task, our submission achieves the top BLEU result, outperforming the best pure neural system by 1.1 BLEU points and our own phrase-based baseline by 1.6 BLEU. After manual evaluation, this system is the best restricted system in its own cluster. In follow-up experiments we improve results by additional 0.8 BLEU.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro