The ACII 2022 Affective Vocal Bursts Workshop Competition: Understanding a critically understudied modality of emotional expression

07/07/2022
by   Alice Baird, et al.
12

The ACII Affective Vocal Bursts Workshop Competition is focused on understanding multiple affective dimensions of vocal bursts: laughs, gasps, cries, screams, and many other non-linguistic vocalizations central to the expression of emotion and to human communication more generally. This year's competition comprises four tracks using a large-scale and in-the-wild dataset of 59,299 vocalizations from 1,702 speakers. The first, the A-VB-High task, requires competition participants to perform a multi-label regression on a novel model for emotion, utilizing ten classes of richly annotated emotional expression intensities, including; Awe, Fear, and Surprise. The second, the A-VB-Two task, utilizes the more conventional 2-dimensional model for emotion, arousal, and valence. The third, the A-VB-Culture task, requires participants to explore the cultural aspects of the dataset, training native-country dependent models. Finally, for the fourth task, A-VB-Type, participants should recognize the type of vocal burst (e.g., laughter, cry, grunt) as an 8-class classification. This paper describes the four tracks and baseline systems, which use state-of-the-art machine learning methods. The baseline performance for each track is obtained by utilizing an end-to-end deep learning model and is as follows: for A-VB-High, a mean (over the 10-dimensions) Concordance Correlation Coefficient (CCC) of 0.5687 CCC is obtained; for A-VB-Two, a mean (over the 2-dimensions) CCC of 0.5084 is obtained; for A-VB-Culture, a mean CCC from the four cultures of 0.4401 is obtained; and for A-VB-Type, the baseline Unweighted Average Recall (UAR) from the 8-classes is 0.4172 UAR.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro