TFDNet: Time-Frequency Enhanced Decomposed Network for Long-term Time Series Forecasting

08/25/2023
by   Yuxiao Luo, et al.
0

Long-term time series forecasting is a vital task and has a wide range of real applications. Recent methods focus on capturing the underlying patterns from one single domain (e.g. the time domain or the frequency domain), and have not taken a holistic view to process long-term time series from the time-frequency domains. In this paper, we propose a Time-Frequency Enhanced Decomposed Network (TFDNet) to capture both the long-term underlying patterns and temporal periodicity from the time-frequency domain. In TFDNet, we devise a multi-scale time-frequency enhanced encoder backbone and develop two separate trend and seasonal time-frequency blocks to capture the distinct patterns within the decomposed trend and seasonal components in multi-resolutions. Diverse kernel learning strategies of the kernel operations in time-frequency blocks have been explored, by investigating and incorporating the potential different channel-wise correlation patterns of multivariate time series. Experimental evaluation of eight datasets from five benchmark domains demonstrated that TFDNet is superior to state-of-the-art approaches in both effectiveness and efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro