Tensor SVD: Statistical and Computational Limits

03/08/2017
by   Anru Zhang, et al.
0

In this paper, we propose a general framework for tensor singular value decomposition (tensor SVD), which focuses on the methodology and theory for extracting the hidden low-rank structure from high-dimensional tensor data. Comprehensive results are developed on both the statistical and computational limits for tensor SVD. This problem exhibits three different phases according to the signal-noise-ratio (SNR). In particular, with strong SNR, we show that the classical higher order orthogonal iteration achieves the minimax optimal rate of convergence in estimation; with weak SNR, the information-theoretical lower bound implies that it is impossible to have consistent estimation in general; with moderate SNR, we show that the non-convex maximum likelihood estimation provides optimal solution, but with NP-hard computational cost; moreover, under the hardness hypothesis of hypergraphic planted clique detection, there are no polynomial-time algorithms performing consistently in general.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro