Tensor object classification via multilinear discriminant analysis network

11/05/2014
by   Rui Zeng, et al.
0

This paper proposes a multilinear discriminant analysis network (MLDANet) for the recognition of multidimensional objects, known as tensor objects. The MLDANet is a variation of linear discriminant analysis network (LDANet) and principal component analysis network (PCANet), both of which are the recently proposed deep learning algorithms. The MLDANet consists of three parts: 1) The encoder learned by MLDA from tensor data. 2) Features maps ob-tained from decoder. 3) The use of binary hashing and histogram for feature pooling. A learning algorithm for MLDANet is described. Evaluations on UCF11 database indicate that the proposed MLDANet outperforms the PCANet, LDANet, MPCA + LDA, and MLDA in terms of classification for tensor objects.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro