Synthetic Source Language Augmentation for Colloquial Neural Machine Translation

12/30/2020
by   Asrul Sani Ariesandy, et al.
0

Neural machine translation (NMT) is typically domain-dependent and style-dependent, and it requires lots of training data. State-of-the-art NMT models often fall short in handling colloquial variations of its source language and the lack of parallel data in this regard is a challenging hurdle in systematically improving the existing models. In this work, we develop a novel colloquial Indonesian-English test-set collected from YouTube transcript and Twitter. We perform synthetic style augmentation to the source of formal Indonesian language and show that it improves the baseline Id-En models (in BLEU) over the new test data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro