Symmetry Protected Quantum Computation

05/10/2021
by   Michael H. Freedman, et al.
0

We consider a model of quantum computation using qubits where it is possible to measure whether a given pair are in a singlet (total spin 0) or triplet (total spin 1) state. The physical motivation is that we can do these measurements in a way that is protected against revealing other information so long as all terms in the Hamiltonian are SU(2)-invariant. We conjecture that this model is equivalent to BQP. Towards this goal, we show: (1) this model is capable of universal quantum computation with polylogarithmic overhead if it is supplemented by single qubit X and Z gates. (2) Without any additional gates, it is at least as powerful as the weak model of "permutational quantum computation" of Jordan [14, 18]. (3) With postselection, the model is equivalent to PostBQP.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro