SwinIA: Self-Supervised Blind-Spot Image Denoising with Zero Convolutions

05/09/2023
by   Mikhail Papkov, et al.
0

The essence of self-supervised image denoising is to restore the signal from the noisy image alone. State-of-the-art solutions for this task rely on the idea of masking pixels and training a fully-convolutional neural network to impute them. This most often requires multiple forward passes, information about the noise model, and intricate regularization functions. In this paper, we propose a Swin Transformer-based Image Autoencoder (SwinIA), the first convolution-free architecture for self-supervised denoising. It can be trained end-to-end with a simple mean squared error loss without masking and does not require any prior knowledge about clean data or noise distribution. Despite its simplicity, SwinIA establishes state-of-the-art on several common benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro