SumeCzech: Large Czech News-Based Summarization Dataset

02/12/2021
by   Vojtěch Hudeček, et al.
0

Document summarization is a well-studied NLP task. With the emergence of artificial neural network models, the summarization performance is increasing, as are the requirements on training data. However, only a few datasets are available for Czech, none of them particularly large. Additionally, summarization has been evaluated predominantly on English, with the commonly used ROUGE metric being English-specific. In this paper, we try to address both issues. We present SumeCzech, a Czech news-based summarization dataset. It contains more than a million documents, each consisting of a headline, a several sentences long abstract and a full text. The dataset can be downloaded using the provided scripts available at http://hdl.handle.net/11234/1-2615. We evaluate several summarization baselines on the dataset, including a strong abstractive approach based on Transformer neural network architecture. The evaluation is performed using a language-agnostic variant of ROUGE.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro